Psycholinguistics in the field:
Accessibility-driven production in Yukatek Maya

Lindsay Butler1,* , T. Florian Jaeger2, Katrina Furth3, Alice Lemieux3, Carlos Gomez Gallo4,5, Juergen Bohnemeyer5
1 University of Arizona, 2 University of Rochester, 3 University of Chicago, 4 Harvard University, 5 University at Buffalo
*Corresponding author: lkbutler@email.arizona.edu

Abstract

Keywords: Accessibility, Availability, alignment, direct and indirect effects of accessibility, animacy, constituent order, Yukatek Maya

The language production system is assumed to be universal, yet surprisingly few languages have been investigated to date. We tested the effects of accessibility on constituent order variation in Yukatek Maya, an indigenous language of Mexico, which is typologically very different from Indo-European and other languages. Through this study, we contribute to the emerging discipline of cross-linguistic psycholinguistics [11].

Accessibility-driven production

Conceptual accessibility

• Referents that are more easily represented in thought are more highly conceptually accessible and more easily retrieved in lexical search [3]
• Contributions to conceptual accessibility: animacy, givenness, concreteness, perspective, etc.
• Accessibility has been hypothesized to affect syntactic production in two ways:

Availability

• Referents that are more easily retrieved will be more accessible [9, 11, 13] (inter alia)
• Accessibility directly affects word order by early mention of more accessible referents

Alignment

• More accessible referents will be preferentially assigned a grammatical function along the hierarchy of grammatical function: SU > DO > IO [3, 8]
• Similar linguistic alignment theories have been proposed for various linguistic phenomena, e.g. Differential Object Marking [11]
• Accessibility indirectly affects word order

Previous studies

• Support for both availability and alignment effects
• Earliest evidence favored alignment account of English active-passive alternation [3]
• Passive does not presuppose animacy
• 3-4: The boy was struck by lighting
• Passive favored by animacy account [14]
• Most recent evidence from speakers of Greek and Japanese finds independent effects of direct and indirect accessibility [5, 10]

Our experiment

Design

• 2x2 manipulating animacy (human, inanimate) and thematic role (agent, patient) in transitive events

Why Yukatek?

• Passive does not presuppose a word order change like it does in English
• Constituent order possibilities
• VPA, AVP, PVA

Predictions

• Availability predicts that the more animate referent will be mentioned first (through left dislocation)
• Alignment predicts that more animate referents will be assigned subject function, and thus a passive voice construction will be chosen

Methods

• Multilevel logit models with maximal random effect structure for participants and items justified by model comparison

Procedure

• Video description task
• Target videos manipulated agent and patient animacy in transitive events such as ball hit policeman (Figure 1) or dog chase farmer (Figure 2)

Participants

• 23 native speakers of Yukatek Maya, bilingual in Spanish

Materials

• Videos created with Poser software
• 16 items, 20 fillers

Results

Constituent order

• Human agents and patients more likely to be mentioned earlier (agent: χ²=0.001; interaction: n.s., N=597)
• Additional effects of definiteness:
• Definite agents more likely to be mentioned earlier (p=0.002) and agent definiteness stronger if patient was also definite (interaction p<0.001; no main effect of patient definiteness)
• Additional effects of transitivity:
• Inanimate agents were less often described transitively (p=0.002; no patient effects; e.g. An apple fell on a man)
• Although partly correlated with these two effects, animacy effects held after controlling for definiteness and excluding intransitive sentences (p=0.002; no interaction, N=502)

Voice

• Human agents correlated with use of active voice (p<0.0001) and human patients with use of passive voice, though more weakly (p=0.02, N=604)

Conclusions

• Speakers of Yukatek showed a significant tendency to mention animate referents first
• In line with cross-linguistic findings for Japanese [6], Greek [5], Spanish [13], Odawa [7] and others
• Definiteness and animacy were correlated but had independent effects on constituent order
• Speakers of Yukatek also showed a significant tendency to use the passive voice when human referents were patients and inanimate referents were agents
• Passive voice and constituent order were correlated
• Can animacy have direct and indirect effects [8]?

Discussion

• We clearly see the effects of availability
• We cannot rule out the effects of alignment
• Alignment may play a role in encoding of discourse function in place of, or in addition to, grammatical function (if discourse function is marked syntactically)
• We show feasibility of field-based psycholinguistics studies

References, additional language data and abbreviations available on handout

Yukatek Maya morphosyntax

Head marking

• Rather than case-marking (on nouns/dependents), arguments are marked by affixes on the verb (head)
• Pronominal cross-reference markers
• Yukatek has two sets, called Set A and Set B
1) kuv- /ku-kuv-
• IMPF-A3 see-INC-B1 DET-child-D2
2) tsen-chi-’ah
• PRV-A3 mouth-CMP-B1 DET-child one-CLAN
• T-aran-ta-D2

The child sees me

• With two word referents, there is ambiguity as to which referent is the agent and which is the patient
• Can be resolved by a prominence hierarchy:
• Topic > Definiteness < Animacy [3]

Constituent order

• Canonical: Verb-Patient-Agent (VPA) [4]
• Most frequent: AVP by left dislocation of the agent
• Also available: PVA by left dislocation of the patient

Voice

• Yukatek has many voices (active, passive, middle, antipassive)
• Active and passive voices are relevant here
• Passive voice is marked by verbal inflection, either infixing a glottal stop into the vowel of the verb root (root transitives), or by suffixing -a- to the verb (derived transitives)

Field-based psycholinguistics

Logistics

• Transporting researchers and equipment
• Finding an appropriately quiet and secure setting

Participants

• Speakers of understudied languages may or may not be familiar with computers, literate in the language in question, or familiar with testing paradigm

Ethics and understudied languages

• Access to data on part of the speech community and the greater academic community
• Giving back to the community: giving lectures or setting up a library in the community, aiding in the development of pedagogical materials, etc.

Figure 1

Human A, Non-human P
Human A, Human P
Non-human A, Non-human P
Non-human A, Human P

Figure 2
Yukatek repair of prominence hierarchy violation (in 2))

Left dislocation

5) \text{hun-túul} x-chìiwol=o' t=u=chi\text{-ah} le=pál-o'
\text{one-CLAN} F\text{-tarantula-D3 PRV-A3=mouth-CMP.B3 DET=child=D2 the child [4]}

Passivization

6) h-ch\textsuperscript{=b} le=pál tumén hun-túul x-chìiwol=o'
\text{PRV-mouth-PASS.CMP.B3 DET=child=by a F\text{-tarantula-D2 tarantula [4]}

Example responses to experimental stimuli

Human Agent, Inanimate Patient, Active AVP

7) Le=máak=o' t=u=lah-ah le=mesa=o'
\text{DET=person=D2 PRV-A3=slap-CMP.B3 DET=table=D2}
The person is slapping the table

Inanimate Agent, Human Patient, Passive PVA

8) Le=máak=o' tún hírít\textsuperscript{=a=t =a'} tumén u\textsuperscript{k=amy=yon}
\text{DET=person=D2 PROG.A3 slide-APP-PASS.INC DET=truck=D2}
The person is being slid along by a truck

Abbreviations

A Set A pronominal cross-reference marker
APP Applicative
B Set B pronominal cross-reference marker
CAUSE Causal
CLAN Animate Classifier
CMP Completive
D2 Distal/anaphoric indexical particle
D3 Text deictic particle
DET Determiner
PASS Passive
PROG Progressive
PRV Perfective

References