Balancing experimental lists without sacrificing voluntary participation

Andrew Watts & T. Florian Jaeger

HLP Lab
Department of Brain and Cognitive Sciences
University of Rochester

July 27, 2011
Andrew Watts

Balancing experimental lists without sacrificing voluntary participation
Introduction

Our Solutions
 Super-additive Compensation (progressive pay)
 List Balancing

Example studies
 Examples of progressive pay schemes
 Examples of list balancing

Conclusions
Why crowdsourcing?

- Provides ready access to a large heterogeneous pool of participants
 - Participants we normally wouldn’t have access to in a local lab
 - Participants with multiple language backgrounds
- Allows for rapid data collection
What it requires - Mirroring procedures in the lab

- Want to be able to use balanced factorial designs (Latin square design)
- Ethics: voluntary participation
 - Need to allow participants to voluntarily abort experiments
- This can cause problems
 - Creates Zipf-distributed data and unbalanced lists
 - Makes data complicated or impossible to analyze (loss of power, etc)
Desiderata

- A way to ensure that participants see all (or most) of the items in their assigned experimental condition
 - While still allowing voluntary withdrawal from experiment at most times during the experiment
- A way to ensure that all items within an experimental condition are seen by relatively equal numbers of participants
How do you get workers to do long experiments?

- Pay well and develop a reputation for doing so and for paying in a timely manner
- Take advantage of the Bonus system to reward good workers and weed out less interested and committed workers
Pay low, bonus high

Compensation bar graph shown to participants

- Example with $0.10 base and bonuses of:
 - $0.45 for 5 HITs
 - $1.50 for 10 HITs
 - $3.90 for all 16 HITs
- Vertical lines show levels where bonus increases
The problem of list balancing on MTurk

- We want to do factorial designs
- MTurk does not natively support the idea of multiple lists
Our list balancing solution - mturker side

Balancing experimental lists without sacrificing voluntary participation
External Question workflow - experimenter side

Worker PC
Worker PC
Worker PC
Worker PC
Worker PC
Lab Computer

Mechanical Turk Server
getResults.sh
Send results as tab-delimited file

HIT results via POST request

Andrew Watts & T. Florian Jaeger
HLP Lab Department of Brain and Cognitive Sciences University of Rochester
Balancing experimental lists without sacrificing voluntary participation
List Balancing

On HIT request

Webserver

Request Worker

lookup worker in DB

Seen worker before?

Yes

Return next HIT

No

Assign worker to list

Create DB entry for worker
List selection algorithm

1. Get all lists from DB
2. Sort by #workers low to high
3. All lists same length?
 - Yes: Return random list
 - No: Take subset of lists equal length to lowest

Balancing experimental lists without sacrificing voluntary participation
Caveat: Balance remains imperfect

- Balanced list assignments in *our database*
- But MTurk provides no callbacks when HITs are submitted or returned (up to 25%)
→ Number of workers actually on each list can be unbalanced
 - For large number of participants, this evens out
 - Quick fix for all other cases: request half of desired HITs, examine balance, restrict lists to those that need to be filled, iterate sequence until lists are filled and close to balanced
Example studies

- Studies 1-3 (Jaeger, Levy, and Ferreira, 2010): using different progressive pay schemes
 - Syntactic Reduction of Object-extracted Relative Clauses
 - **Written Recall:** Encode sentence for 8 seconds, two simple math problems, recall cue shown for 2 seconds, type complete sentence.

- Studies 4-5 (Hansen-Karr, Ferris, and Jaeger, in prep): Using different ways to balance list
 - **Syntactic priming:** auditory comprehension to written production of ditransitives
Examples of progressive pay schemes

Studies 1-3: Data

- Study 1: 2304 critical items (31% data loss)
- Study 2: 452 critical items (34% data loss)
- Study 3: 2048 critical items (23% data loss)
- (comparable to lab-based experiments; e.g. Ferreira and Dell, 2000 had 30-60% data loss)
Examples of progressive pay schemes

Study 1

- Each HIT consisted of 8 trials (given the ordering constraints, these were likely to be 5-6 fillers and 2-3 targets)
- Each HIT paid $.10, plus
 - $0.40 for 4 HITs
 - $1.00 for 8 HITs
 - $2.00 for all 12 HITs
Study 1: Result

max 12 hits/subj or 48 items/subj
Examples of progressive pay schemes

Study 2

- Each HIT consisted of one item (subjects can stop after every trial)
- Each HIT paid $0.02, plus
 - $0.20 for per every 20 HITs (more regular increments)
Study 2: Result
max 96 hits/subj or 32 items/subj
Study 3

- Each HIT consisted of one trial
- Each HIT paid $.02, plus
 - $.20 for 20 HITs
 - $0.50 for 40 HITs
 - $1.25 for 80 HITs
 - $1.50 for all 96 HITs *(shifted last increment to end of list)*
Study 3 - Results
max 96 HITs/subj or 32 items/subj
Examples of list balancing

Studies 4 and 5

- Short experiments (about 10 minutes) run with many participants:
 - Only 25 listen trials (10 primes, 15 fillers), followed by 10 production trials (4 targets, 6 fillers)
 - 80 (Study 4) to 192 participants (Study 5) in 1-3 days, each paid $1.
- Wanted 12 workers on each list for both experiments
 - Study 4: 6 lists
 - Study 5: 16 lists
Examples of list balancing

List balance

Graphs showing list balance for different lists.

<table>
<thead>
<tr>
<th>List</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>
Conclusions

- Crowdsourcing can provide quality data
- Via progressive pay we can come close to achieving conditions similar to those in the lab without sacrificing the benefits of crowdsourcing
- We can achieve list balance on Mechanical Turk
- Changes how we do experiments (shorter experiments with more subjects; can avoid learning effects)
Acknowledgements

- Thanks to Camber Hansen-Karr and Jeremy Ferris for the use of their experiment data
- Thanks to Whitney Gegg-Harrison for feedback on the presentation and general support
Appendix

Additional material
Additional material

URLs

- External Question API docs
- Jinja2 template docs
- SQL Alchemy docs
Our List-Balancing Solution: Tech details

- Use the *External Question* API
- Create a database and CGI on our webserver
- When a worker accepts a HIT, assign them to a list using balancing algorithm
 - Original system used Perl w/ CGI, Template::Alloy::Velocity, and DBD::MySQL
 - Current system uses Python WSGI, Jinja2 templates, and SQL Alchemy
Data - Study 1

- Starting point: 3456 HITs ((12 HITs * 8 items) * 36) from 99 workers, including 2304 critical items
- Items excluded if participant didn’t answer both math problems correctly. (145 cases, 6.3%)
- Items also excluded if their length (in words) didn’t correspond to original sentence length or if response was like “I don’t remember” or “I forgot”. This excluded 505 items (22% of the data).
- Excluded all workers which contributed fewer than 5 data points
- After all exclusions, left with 1585 items, or 68.8% of original data (from 64 workers)
Items/subject - Study 1
max 48

Andrew Watts & T. Florian Jaeger
HLP Lab Department of Brain and Cognitive Sciences University of Rochester
Balancing experimental lists without sacrificing voluntary participation
Experiment Design - Study 2

- 32 critical items and 64 fillers
- Each HIT consisted of one trial
Compensation - Study 2

- Each HIT paid $.02, plus
 - $.20 for per every 20 HITs
Data - Study 2

- Starting point: 1344 HITs (96 HITs * 14) from 59 workers, including 452 critical items (from 51 workers; 8 did only fillers)
- One item in list was corrupted and was excluded (16 cases) resulting in 3.6% data loss
- Items excluded if participant didn’t answer both math problems correctly. (16 cases, 3.6%)
- 1 unacceptable answers and 24 different answers (excluded, 5.5%)
- 74 RConset mistakes (excluded, 16.4%)
 - 67 of which were just substitutions of pronouns for the repeated NP from the first sentence. Results don’t differ either way.
- Left with 64.4% of original data (from 28 workers)
HITs per subject - Study 2
max 96
Items per subject - Study 2

max 32

Balancing experimental lists without sacrificing voluntary participation
Experiment Design - Study 3

- 32 critical items and 64 fillers
- Each HIT consisted of one trial
Compensation - Study 3

- Each HIT paid $.02, plus
 - $.20 for 20 HITs
 - $0.50 for 40 HITs
 - $1.25 for 80 HITs
 - $1.50 for all 96 HITs
Data - Study 3

- Starting point: 6144 HITs (96 HITs * 64) from 158 workers, including 2048 critical items (from 151 workers; 7 did only fillers)
- Items excluded if participant didn’t answer both math problems correctly. (192 cases)
- Items also excluded if their length (in words) didn’t correspond to original sentence length. This excluded 3.3% of the data.
- Excluded all workers which contributed fewer than 5 data points
- After all exclusions, left with 87.3% of original data (from 97 workers)
HITs per subject - Study 3
max 96
Items per subject - Study 3
max 32

Andrew Watts & T. Florian Jaeger
HLP Lab, Department of Brain and Cognitive Sciences, University of Rochester

Balancing experimental lists without sacrificing voluntary participation